\(\int \frac {(d \sin (e+f x))^{3/2}}{\sqrt {g \cos (e+f x)} (a+b \sin (e+f x))} \, dx\) [1431]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (warning: unable to verify)
   Maple [B] (warning: unable to verify)
   Fricas [F(-1)]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 37, antiderivative size = 508 \[ \int \frac {(d \sin (e+f x))^{3/2}}{\sqrt {g \cos (e+f x)} (a+b \sin (e+f x))} \, dx=-\frac {d^{3/2} \arctan \left (1-\frac {\sqrt {2} \sqrt {g} \sqrt {d \sin (e+f x)}}{\sqrt {d} \sqrt {g \cos (e+f x)}}\right )}{\sqrt {2} b f \sqrt {g}}+\frac {d^{3/2} \arctan \left (1+\frac {\sqrt {2} \sqrt {g} \sqrt {d \sin (e+f x)}}{\sqrt {d} \sqrt {g \cos (e+f x)}}\right )}{\sqrt {2} b f \sqrt {g}}+\frac {2 \sqrt {2} a d^{3/2} \sqrt {\cos (e+f x)} \operatorname {EllipticPi}\left (-\frac {a}{b-\sqrt {-a^2+b^2}},\arcsin \left (\frac {\sqrt {d \sin (e+f x)}}{\sqrt {d} \sqrt {1+\cos (e+f x)}}\right ),-1\right )}{b \sqrt {-a^2+b^2} f \sqrt {g \cos (e+f x)}}-\frac {2 \sqrt {2} a d^{3/2} \sqrt {\cos (e+f x)} \operatorname {EllipticPi}\left (-\frac {a}{b+\sqrt {-a^2+b^2}},\arcsin \left (\frac {\sqrt {d \sin (e+f x)}}{\sqrt {d} \sqrt {1+\cos (e+f x)}}\right ),-1\right )}{b \sqrt {-a^2+b^2} f \sqrt {g \cos (e+f x)}}+\frac {d^{3/2} \log \left (\sqrt {d}-\frac {\sqrt {2} \sqrt {g} \sqrt {d \sin (e+f x)}}{\sqrt {g \cos (e+f x)}}+\sqrt {d} \tan (e+f x)\right )}{2 \sqrt {2} b f \sqrt {g}}-\frac {d^{3/2} \log \left (\sqrt {d}+\frac {\sqrt {2} \sqrt {g} \sqrt {d \sin (e+f x)}}{\sqrt {g \cos (e+f x)}}+\sqrt {d} \tan (e+f x)\right )}{2 \sqrt {2} b f \sqrt {g}} \]

[Out]

-1/2*d^(3/2)*arctan(1-2^(1/2)*g^(1/2)*(d*sin(f*x+e))^(1/2)/d^(1/2)/(g*cos(f*x+e))^(1/2))/b/f*2^(1/2)/g^(1/2)+1
/2*d^(3/2)*arctan(1+2^(1/2)*g^(1/2)*(d*sin(f*x+e))^(1/2)/d^(1/2)/(g*cos(f*x+e))^(1/2))/b/f*2^(1/2)/g^(1/2)+1/4
*d^(3/2)*ln(d^(1/2)-2^(1/2)*g^(1/2)*(d*sin(f*x+e))^(1/2)/(g*cos(f*x+e))^(1/2)+d^(1/2)*tan(f*x+e))/b/f*2^(1/2)/
g^(1/2)-1/4*d^(3/2)*ln(d^(1/2)+2^(1/2)*g^(1/2)*(d*sin(f*x+e))^(1/2)/(g*cos(f*x+e))^(1/2)+d^(1/2)*tan(f*x+e))/b
/f*2^(1/2)/g^(1/2)+2*a*d^(3/2)*EllipticPi((d*sin(f*x+e))^(1/2)/d^(1/2)/(1+cos(f*x+e))^(1/2),-a/(b-(-a^2+b^2)^(
1/2)),I)*2^(1/2)*cos(f*x+e)^(1/2)/b/f/(-a^2+b^2)^(1/2)/(g*cos(f*x+e))^(1/2)-2*a*d^(3/2)*EllipticPi((d*sin(f*x+
e))^(1/2)/d^(1/2)/(1+cos(f*x+e))^(1/2),-a/(b+(-a^2+b^2)^(1/2)),I)*2^(1/2)*cos(f*x+e)^(1/2)/b/f/(-a^2+b^2)^(1/2
)/(g*cos(f*x+e))^(1/2)

Rubi [A] (verified)

Time = 0.51 (sec) , antiderivative size = 508, normalized size of antiderivative = 1.00, number of steps used = 15, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.297, Rules used = {2988, 2654, 303, 1176, 631, 210, 1179, 642, 2987, 2986, 1232} \[ \int \frac {(d \sin (e+f x))^{3/2}}{\sqrt {g \cos (e+f x)} (a+b \sin (e+f x))} \, dx=\frac {2 \sqrt {2} a d^{3/2} \sqrt {\cos (e+f x)} \operatorname {EllipticPi}\left (-\frac {a}{b-\sqrt {b^2-a^2}},\arcsin \left (\frac {\sqrt {d \sin (e+f x)}}{\sqrt {d} \sqrt {\cos (e+f x)+1}}\right ),-1\right )}{b f \sqrt {b^2-a^2} \sqrt {g \cos (e+f x)}}-\frac {2 \sqrt {2} a d^{3/2} \sqrt {\cos (e+f x)} \operatorname {EllipticPi}\left (-\frac {a}{b+\sqrt {b^2-a^2}},\arcsin \left (\frac {\sqrt {d \sin (e+f x)}}{\sqrt {d} \sqrt {\cos (e+f x)+1}}\right ),-1\right )}{b f \sqrt {b^2-a^2} \sqrt {g \cos (e+f x)}}-\frac {d^{3/2} \arctan \left (1-\frac {\sqrt {2} \sqrt {g} \sqrt {d \sin (e+f x)}}{\sqrt {d} \sqrt {g \cos (e+f x)}}\right )}{\sqrt {2} b f \sqrt {g}}+\frac {d^{3/2} \arctan \left (\frac {\sqrt {2} \sqrt {g} \sqrt {d \sin (e+f x)}}{\sqrt {d} \sqrt {g \cos (e+f x)}}+1\right )}{\sqrt {2} b f \sqrt {g}}+\frac {d^{3/2} \log \left (-\frac {\sqrt {2} \sqrt {g} \sqrt {d \sin (e+f x)}}{\sqrt {g \cos (e+f x)}}+\sqrt {d} \tan (e+f x)+\sqrt {d}\right )}{2 \sqrt {2} b f \sqrt {g}}-\frac {d^{3/2} \log \left (\frac {\sqrt {2} \sqrt {g} \sqrt {d \sin (e+f x)}}{\sqrt {g \cos (e+f x)}}+\sqrt {d} \tan (e+f x)+\sqrt {d}\right )}{2 \sqrt {2} b f \sqrt {g}} \]

[In]

Int[(d*Sin[e + f*x])^(3/2)/(Sqrt[g*Cos[e + f*x]]*(a + b*Sin[e + f*x])),x]

[Out]

-((d^(3/2)*ArcTan[1 - (Sqrt[2]*Sqrt[g]*Sqrt[d*Sin[e + f*x]])/(Sqrt[d]*Sqrt[g*Cos[e + f*x]])])/(Sqrt[2]*b*f*Sqr
t[g])) + (d^(3/2)*ArcTan[1 + (Sqrt[2]*Sqrt[g]*Sqrt[d*Sin[e + f*x]])/(Sqrt[d]*Sqrt[g*Cos[e + f*x]])])/(Sqrt[2]*
b*f*Sqrt[g]) + (2*Sqrt[2]*a*d^(3/2)*Sqrt[Cos[e + f*x]]*EllipticPi[-(a/(b - Sqrt[-a^2 + b^2])), ArcSin[Sqrt[d*S
in[e + f*x]]/(Sqrt[d]*Sqrt[1 + Cos[e + f*x]])], -1])/(b*Sqrt[-a^2 + b^2]*f*Sqrt[g*Cos[e + f*x]]) - (2*Sqrt[2]*
a*d^(3/2)*Sqrt[Cos[e + f*x]]*EllipticPi[-(a/(b + Sqrt[-a^2 + b^2])), ArcSin[Sqrt[d*Sin[e + f*x]]/(Sqrt[d]*Sqrt
[1 + Cos[e + f*x]])], -1])/(b*Sqrt[-a^2 + b^2]*f*Sqrt[g*Cos[e + f*x]]) + (d^(3/2)*Log[Sqrt[d] - (Sqrt[2]*Sqrt[
g]*Sqrt[d*Sin[e + f*x]])/Sqrt[g*Cos[e + f*x]] + Sqrt[d]*Tan[e + f*x]])/(2*Sqrt[2]*b*f*Sqrt[g]) - (d^(3/2)*Log[
Sqrt[d] + (Sqrt[2]*Sqrt[g]*Sqrt[d*Sin[e + f*x]])/Sqrt[g*Cos[e + f*x]] + Sqrt[d]*Tan[e + f*x]])/(2*Sqrt[2]*b*f*
Sqrt[g])

Rule 210

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 303

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]},
Dist[1/(2*s), Int[(r + s*x^2)/(a + b*x^4), x], x] - Dist[1/(2*s), Int[(r - s*x^2)/(a + b*x^4), x], x]] /; Free
Q[{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ,
 b]]))

Rule 631

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[a*(c/b^2)]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 642

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[d*(Log[RemoveContent[a + b*x +
c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1176

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[2*(d/e), 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 1179

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[-2*(d/e), 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 1232

Int[1/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (c_.)*(x_)^4]), x_Symbol] :> With[{q = Rt[-c/a, 4]}, Simp[(1/(d*Sqrt[
a]*q))*EllipticPi[-e/(d*q^2), ArcSin[q*x], -1], x]] /; FreeQ[{a, c, d, e}, x] && NegQ[c/a] && GtQ[a, 0]

Rule 2654

Int[(cos[(e_.) + (f_.)*(x_)]*(b_.))^(n_)*((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> With[{k = Denomina
tor[m]}, Dist[k*a*(b/f), Subst[Int[x^(k*(m + 1) - 1)/(a^2 + b^2*x^(2*k)), x], x, (a*Sin[e + f*x])^(1/k)/(b*Cos
[e + f*x])^(1/k)], x]] /; FreeQ[{a, b, e, f}, x] && EqQ[m + n, 0] && GtQ[m, 0] && LtQ[m, 1]

Rule 2986

Int[Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]/(Sqrt[cos[(e_.) + (f_.)*(x_)]]*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]))
, x_Symbol] :> With[{q = Rt[-a^2 + b^2, 2]}, Dist[2*Sqrt[2]*d*((b + q)/(f*q)), Subst[Int[1/((d*(b + q) + a*x^2
)*Sqrt[1 - x^4/d^2]), x], x, Sqrt[d*Sin[e + f*x]]/Sqrt[1 + Cos[e + f*x]]], x] - Dist[2*Sqrt[2]*d*((b - q)/(f*q
)), Subst[Int[1/((d*(b - q) + a*x^2)*Sqrt[1 - x^4/d^2]), x], x, Sqrt[d*Sin[e + f*x]]/Sqrt[1 + Cos[e + f*x]]],
x]] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 2987

Int[Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]/(Sqrt[cos[(e_.) + (f_.)*(x_)]*(g_.)]*((a_) + (b_.)*sin[(e_.) + (f_.)*(
x_)])), x_Symbol] :> Dist[Sqrt[Cos[e + f*x]]/Sqrt[g*Cos[e + f*x]], Int[Sqrt[d*Sin[e + f*x]]/(Sqrt[Cos[e + f*x]
]*(a + b*Sin[e + f*x])), x], x] /; FreeQ[{a, b, d, e, f, g}, x] && NeQ[a^2 - b^2, 0]

Rule 2988

Int[((cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_))/((a_) + (b_.)*sin[(e_.) + (f_.
)*(x_)]), x_Symbol] :> Dist[d/b, Int[(g*Cos[e + f*x])^p*(d*Sin[e + f*x])^(n - 1), x], x] - Dist[a*(d/b), Int[(
g*Cos[e + f*x])^p*((d*Sin[e + f*x])^(n - 1)/(a + b*Sin[e + f*x])), x], x] /; FreeQ[{a, b, d, e, f, g}, x] && N
eQ[a^2 - b^2, 0] && IntegersQ[2*n, 2*p] && LtQ[-1, p, 1] && GtQ[n, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {d \int \frac {\sqrt {d \sin (e+f x)}}{\sqrt {g \cos (e+f x)}} \, dx}{b}-\frac {(a d) \int \frac {\sqrt {d \sin (e+f x)}}{\sqrt {g \cos (e+f x)} (a+b \sin (e+f x))} \, dx}{b} \\ & = \frac {\left (2 d^2 g\right ) \text {Subst}\left (\int \frac {x^2}{d^2+g^2 x^4} \, dx,x,\frac {\sqrt {d \sin (e+f x)}}{\sqrt {g \cos (e+f x)}}\right )}{b f}-\frac {\left (a d \sqrt {\cos (e+f x)}\right ) \int \frac {\sqrt {d \sin (e+f x)}}{\sqrt {\cos (e+f x)} (a+b \sin (e+f x))} \, dx}{b \sqrt {g \cos (e+f x)}} \\ & = -\frac {d^2 \text {Subst}\left (\int \frac {d-g x^2}{d^2+g^2 x^4} \, dx,x,\frac {\sqrt {d \sin (e+f x)}}{\sqrt {g \cos (e+f x)}}\right )}{b f}+\frac {d^2 \text {Subst}\left (\int \frac {d+g x^2}{d^2+g^2 x^4} \, dx,x,\frac {\sqrt {d \sin (e+f x)}}{\sqrt {g \cos (e+f x)}}\right )}{b f}-\frac {\left (2 \sqrt {2} a \left (1-\frac {b}{\sqrt {-a^2+b^2}}\right ) d^2 \sqrt {\cos (e+f x)}\right ) \text {Subst}\left (\int \frac {1}{\left (\left (b-\sqrt {-a^2+b^2}\right ) d+a x^2\right ) \sqrt {1-\frac {x^4}{d^2}}} \, dx,x,\frac {\sqrt {d \sin (e+f x)}}{\sqrt {1+\cos (e+f x)}}\right )}{b f \sqrt {g \cos (e+f x)}}-\frac {\left (2 \sqrt {2} a \left (1+\frac {b}{\sqrt {-a^2+b^2}}\right ) d^2 \sqrt {\cos (e+f x)}\right ) \text {Subst}\left (\int \frac {1}{\left (\left (b+\sqrt {-a^2+b^2}\right ) d+a x^2\right ) \sqrt {1-\frac {x^4}{d^2}}} \, dx,x,\frac {\sqrt {d \sin (e+f x)}}{\sqrt {1+\cos (e+f x)}}\right )}{b f \sqrt {g \cos (e+f x)}} \\ & = \frac {2 \sqrt {2} a d^{3/2} \sqrt {\cos (e+f x)} \operatorname {EllipticPi}\left (-\frac {a}{b-\sqrt {-a^2+b^2}},\arcsin \left (\frac {\sqrt {d \sin (e+f x)}}{\sqrt {d} \sqrt {1+\cos (e+f x)}}\right ),-1\right )}{b \sqrt {-a^2+b^2} f \sqrt {g \cos (e+f x)}}-\frac {2 \sqrt {2} a d^{3/2} \sqrt {\cos (e+f x)} \operatorname {EllipticPi}\left (-\frac {a}{b+\sqrt {-a^2+b^2}},\arcsin \left (\frac {\sqrt {d \sin (e+f x)}}{\sqrt {d} \sqrt {1+\cos (e+f x)}}\right ),-1\right )}{b \sqrt {-a^2+b^2} f \sqrt {g \cos (e+f x)}}+\frac {d^2 \text {Subst}\left (\int \frac {1}{\frac {d}{g}-\frac {\sqrt {2} \sqrt {d} x}{\sqrt {g}}+x^2} \, dx,x,\frac {\sqrt {d \sin (e+f x)}}{\sqrt {g \cos (e+f x)}}\right )}{2 b f g}+\frac {d^2 \text {Subst}\left (\int \frac {1}{\frac {d}{g}+\frac {\sqrt {2} \sqrt {d} x}{\sqrt {g}}+x^2} \, dx,x,\frac {\sqrt {d \sin (e+f x)}}{\sqrt {g \cos (e+f x)}}\right )}{2 b f g}+\frac {d^{3/2} \text {Subst}\left (\int \frac {\frac {\sqrt {2} \sqrt {d}}{\sqrt {g}}+2 x}{-\frac {d}{g}-\frac {\sqrt {2} \sqrt {d} x}{\sqrt {g}}-x^2} \, dx,x,\frac {\sqrt {d \sin (e+f x)}}{\sqrt {g \cos (e+f x)}}\right )}{2 \sqrt {2} b f \sqrt {g}}+\frac {d^{3/2} \text {Subst}\left (\int \frac {\frac {\sqrt {2} \sqrt {d}}{\sqrt {g}}-2 x}{-\frac {d}{g}+\frac {\sqrt {2} \sqrt {d} x}{\sqrt {g}}-x^2} \, dx,x,\frac {\sqrt {d \sin (e+f x)}}{\sqrt {g \cos (e+f x)}}\right )}{2 \sqrt {2} b f \sqrt {g}} \\ & = \frac {2 \sqrt {2} a d^{3/2} \sqrt {\cos (e+f x)} \operatorname {EllipticPi}\left (-\frac {a}{b-\sqrt {-a^2+b^2}},\arcsin \left (\frac {\sqrt {d \sin (e+f x)}}{\sqrt {d} \sqrt {1+\cos (e+f x)}}\right ),-1\right )}{b \sqrt {-a^2+b^2} f \sqrt {g \cos (e+f x)}}-\frac {2 \sqrt {2} a d^{3/2} \sqrt {\cos (e+f x)} \operatorname {EllipticPi}\left (-\frac {a}{b+\sqrt {-a^2+b^2}},\arcsin \left (\frac {\sqrt {d \sin (e+f x)}}{\sqrt {d} \sqrt {1+\cos (e+f x)}}\right ),-1\right )}{b \sqrt {-a^2+b^2} f \sqrt {g \cos (e+f x)}}+\frac {d^{3/2} \log \left (\sqrt {d}-\frac {\sqrt {2} \sqrt {g} \sqrt {d \sin (e+f x)}}{\sqrt {g \cos (e+f x)}}+\sqrt {d} \tan (e+f x)\right )}{2 \sqrt {2} b f \sqrt {g}}-\frac {d^{3/2} \log \left (\sqrt {d}+\frac {\sqrt {2} \sqrt {g} \sqrt {d \sin (e+f x)}}{\sqrt {g \cos (e+f x)}}+\sqrt {d} \tan (e+f x)\right )}{2 \sqrt {2} b f \sqrt {g}}+\frac {d^{3/2} \text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1-\frac {\sqrt {2} \sqrt {g} \sqrt {d \sin (e+f x)}}{\sqrt {d} \sqrt {g \cos (e+f x)}}\right )}{\sqrt {2} b f \sqrt {g}}-\frac {d^{3/2} \text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1+\frac {\sqrt {2} \sqrt {g} \sqrt {d \sin (e+f x)}}{\sqrt {d} \sqrt {g \cos (e+f x)}}\right )}{\sqrt {2} b f \sqrt {g}} \\ & = -\frac {d^{3/2} \arctan \left (1-\frac {\sqrt {2} \sqrt {g} \sqrt {d \sin (e+f x)}}{\sqrt {d} \sqrt {g \cos (e+f x)}}\right )}{\sqrt {2} b f \sqrt {g}}+\frac {d^{3/2} \arctan \left (1+\frac {\sqrt {2} \sqrt {g} \sqrt {d \sin (e+f x)}}{\sqrt {d} \sqrt {g \cos (e+f x)}}\right )}{\sqrt {2} b f \sqrt {g}}+\frac {2 \sqrt {2} a d^{3/2} \sqrt {\cos (e+f x)} \operatorname {EllipticPi}\left (-\frac {a}{b-\sqrt {-a^2+b^2}},\arcsin \left (\frac {\sqrt {d \sin (e+f x)}}{\sqrt {d} \sqrt {1+\cos (e+f x)}}\right ),-1\right )}{b \sqrt {-a^2+b^2} f \sqrt {g \cos (e+f x)}}-\frac {2 \sqrt {2} a d^{3/2} \sqrt {\cos (e+f x)} \operatorname {EllipticPi}\left (-\frac {a}{b+\sqrt {-a^2+b^2}},\arcsin \left (\frac {\sqrt {d \sin (e+f x)}}{\sqrt {d} \sqrt {1+\cos (e+f x)}}\right ),-1\right )}{b \sqrt {-a^2+b^2} f \sqrt {g \cos (e+f x)}}+\frac {d^{3/2} \log \left (\sqrt {d}-\frac {\sqrt {2} \sqrt {g} \sqrt {d \sin (e+f x)}}{\sqrt {g \cos (e+f x)}}+\sqrt {d} \tan (e+f x)\right )}{2 \sqrt {2} b f \sqrt {g}}-\frac {d^{3/2} \log \left (\sqrt {d}+\frac {\sqrt {2} \sqrt {g} \sqrt {d \sin (e+f x)}}{\sqrt {g \cos (e+f x)}}+\sqrt {d} \tan (e+f x)\right )}{2 \sqrt {2} b f \sqrt {g}} \\ \end{align*}

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 6 vs. order 4 in optimal.

Time = 11.80 (sec) , antiderivative size = 518, normalized size of antiderivative = 1.02 \[ \int \frac {(d \sin (e+f x))^{3/2}}{\sqrt {g \cos (e+f x)} (a+b \sin (e+f x))} \, dx=\frac {10 \left (a^2-b^2\right ) \cot (e+f x) (d \sin (e+f x))^{3/2} \left (a+b \sqrt {\sin ^2(e+f x)}\right ) \left (\frac {a \operatorname {AppellF1}\left (\frac {1}{4},-\frac {1}{4},1,\frac {5}{4},\cos ^2(e+f x),\frac {b^2 \cos ^2(e+f x)}{-a^2+b^2}\right )}{5 \left (a^2-b^2\right ) \operatorname {AppellF1}\left (\frac {1}{4},-\frac {1}{4},1,\frac {5}{4},\cos ^2(e+f x),\frac {b^2 \cos ^2(e+f x)}{-a^2+b^2}\right )+\left (-4 b^2 \operatorname {AppellF1}\left (\frac {5}{4},-\frac {1}{4},2,\frac {9}{4},\cos ^2(e+f x),\frac {b^2 \cos ^2(e+f x)}{-a^2+b^2}\right )+\left (-a^2+b^2\right ) \operatorname {AppellF1}\left (\frac {5}{4},\frac {3}{4},1,\frac {9}{4},\cos ^2(e+f x),\frac {b^2 \cos ^2(e+f x)}{-a^2+b^2}\right )\right ) \cos ^2(e+f x)}+\frac {b \operatorname {AppellF1}\left (\frac {1}{4},-\frac {3}{4},1,\frac {5}{4},\cos ^2(e+f x),\frac {b^2 \cos ^2(e+f x)}{-a^2+b^2}\right ) \sqrt {\sin ^2(e+f x)}}{-5 \left (a^2-b^2\right ) \operatorname {AppellF1}\left (\frac {1}{4},-\frac {3}{4},1,\frac {5}{4},\cos ^2(e+f x),\frac {b^2 \cos ^2(e+f x)}{-a^2+b^2}\right )+\left (4 b^2 \operatorname {AppellF1}\left (\frac {5}{4},-\frac {3}{4},2,\frac {9}{4},\cos ^2(e+f x),\frac {b^2 \cos ^2(e+f x)}{-a^2+b^2}\right )+3 \left (a^2-b^2\right ) \operatorname {AppellF1}\left (\frac {5}{4},\frac {1}{4},1,\frac {9}{4},\cos ^2(e+f x),\frac {b^2 \cos ^2(e+f x)}{-a^2+b^2}\right )\right ) \cos ^2(e+f x)}\right )}{f \sqrt {g \cos (e+f x)} (-a+b \sin (e+f x)) (a+b \sin (e+f x))^2} \]

[In]

Integrate[(d*Sin[e + f*x])^(3/2)/(Sqrt[g*Cos[e + f*x]]*(a + b*Sin[e + f*x])),x]

[Out]

(10*(a^2 - b^2)*Cot[e + f*x]*(d*Sin[e + f*x])^(3/2)*(a + b*Sqrt[Sin[e + f*x]^2])*((a*AppellF1[1/4, -1/4, 1, 5/
4, Cos[e + f*x]^2, (b^2*Cos[e + f*x]^2)/(-a^2 + b^2)])/(5*(a^2 - b^2)*AppellF1[1/4, -1/4, 1, 5/4, Cos[e + f*x]
^2, (b^2*Cos[e + f*x]^2)/(-a^2 + b^2)] + (-4*b^2*AppellF1[5/4, -1/4, 2, 9/4, Cos[e + f*x]^2, (b^2*Cos[e + f*x]
^2)/(-a^2 + b^2)] + (-a^2 + b^2)*AppellF1[5/4, 3/4, 1, 9/4, Cos[e + f*x]^2, (b^2*Cos[e + f*x]^2)/(-a^2 + b^2)]
)*Cos[e + f*x]^2) + (b*AppellF1[1/4, -3/4, 1, 5/4, Cos[e + f*x]^2, (b^2*Cos[e + f*x]^2)/(-a^2 + b^2)]*Sqrt[Sin
[e + f*x]^2])/(-5*(a^2 - b^2)*AppellF1[1/4, -3/4, 1, 5/4, Cos[e + f*x]^2, (b^2*Cos[e + f*x]^2)/(-a^2 + b^2)] +
 (4*b^2*AppellF1[5/4, -3/4, 2, 9/4, Cos[e + f*x]^2, (b^2*Cos[e + f*x]^2)/(-a^2 + b^2)] + 3*(a^2 - b^2)*AppellF
1[5/4, 1/4, 1, 9/4, Cos[e + f*x]^2, (b^2*Cos[e + f*x]^2)/(-a^2 + b^2)])*Cos[e + f*x]^2)))/(f*Sqrt[g*Cos[e + f*
x]]*(-a + b*Sin[e + f*x])*(a + b*Sin[e + f*x])^2)

Maple [B] (warning: unable to verify)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 884 vs. \(2 (401 ) = 802\).

Time = 1.89 (sec) , antiderivative size = 885, normalized size of antiderivative = 1.74

method result size
default \(-\frac {\left (\frac {d \left (\csc \left (f x +e \right )-\cot \left (f x +e \right )\right )}{\left (1-\cos \left (f x +e \right )\right )^{2} \left (\csc ^{2}\left (f x +e \right )\right )+1}\right )^{\frac {3}{2}} \left (i \Pi \left (\sqrt {-\cot \left (f x +e \right )+\csc \left (f x +e \right )+1}, \frac {1}{2}-\frac {i}{2}, \frac {\sqrt {2}}{2}\right ) a \sqrt {-a^{2}+b^{2}}-i \Pi \left (\sqrt {-\cot \left (f x +e \right )+\csc \left (f x +e \right )+1}, \frac {1}{2}-\frac {i}{2}, \frac {\sqrt {2}}{2}\right ) b \sqrt {-a^{2}+b^{2}}-i \Pi \left (\sqrt {-\cot \left (f x +e \right )+\csc \left (f x +e \right )+1}, \frac {1}{2}+\frac {i}{2}, \frac {\sqrt {2}}{2}\right ) a \sqrt {-a^{2}+b^{2}}+i \Pi \left (\sqrt {-\cot \left (f x +e \right )+\csc \left (f x +e \right )+1}, \frac {1}{2}+\frac {i}{2}, \frac {\sqrt {2}}{2}\right ) b \sqrt {-a^{2}+b^{2}}-\Pi \left (\sqrt {-\cot \left (f x +e \right )+\csc \left (f x +e \right )+1}, \frac {1}{2}-\frac {i}{2}, \frac {\sqrt {2}}{2}\right ) \sqrt {-a^{2}+b^{2}}\, a +\Pi \left (\sqrt {-\cot \left (f x +e \right )+\csc \left (f x +e \right )+1}, \frac {1}{2}-\frac {i}{2}, \frac {\sqrt {2}}{2}\right ) b \sqrt {-a^{2}+b^{2}}-\Pi \left (\sqrt {-\cot \left (f x +e \right )+\csc \left (f x +e \right )+1}, \frac {1}{2}+\frac {i}{2}, \frac {\sqrt {2}}{2}\right ) a \sqrt {-a^{2}+b^{2}}+\Pi \left (\sqrt {-\cot \left (f x +e \right )+\csc \left (f x +e \right )+1}, \frac {1}{2}+\frac {i}{2}, \frac {\sqrt {2}}{2}\right ) b \sqrt {-a^{2}+b^{2}}+\Pi \left (\sqrt {-\cot \left (f x +e \right )+\csc \left (f x +e \right )+1}, \frac {a}{-b +\sqrt {-a^{2}+b^{2}}+a}, \frac {\sqrt {2}}{2}\right ) \sqrt {-a^{2}+b^{2}}\, a +\Pi \left (\sqrt {-\cot \left (f x +e \right )+\csc \left (f x +e \right )+1}, \frac {a}{-b +\sqrt {-a^{2}+b^{2}}+a}, \frac {\sqrt {2}}{2}\right ) a^{2}-\Pi \left (\sqrt {-\cot \left (f x +e \right )+\csc \left (f x +e \right )+1}, \frac {a}{-b +\sqrt {-a^{2}+b^{2}}+a}, \frac {\sqrt {2}}{2}\right ) a b +\Pi \left (\sqrt {-\cot \left (f x +e \right )+\csc \left (f x +e \right )+1}, -\frac {a}{b +\sqrt {-a^{2}+b^{2}}-a}, \frac {\sqrt {2}}{2}\right ) \sqrt {-a^{2}+b^{2}}\, a -\Pi \left (\sqrt {-\cot \left (f x +e \right )+\csc \left (f x +e \right )+1}, -\frac {a}{b +\sqrt {-a^{2}+b^{2}}-a}, \frac {\sqrt {2}}{2}\right ) a^{2}+\Pi \left (\sqrt {-\cot \left (f x +e \right )+\csc \left (f x +e \right )+1}, -\frac {a}{b +\sqrt {-a^{2}+b^{2}}-a}, \frac {\sqrt {2}}{2}\right ) a b \right ) \sqrt {-\csc \left (f x +e \right )+\cot \left (f x +e \right )}\, \sqrt {2+2 \cot \left (f x +e \right )-2 \csc \left (f x +e \right )}\, \sqrt {-\cot \left (f x +e \right )+\csc \left (f x +e \right )+1}\, \left (\left (1-\cos \left (f x +e \right )\right )^{2}+\sin ^{2}\left (f x +e \right )\right ) \sqrt {2}\, a}{f \left (1-\cos \left (f x +e \right )\right )^{2} \sqrt {-\frac {g \left (\left (1-\cos \left (f x +e \right )\right )^{2} \left (\csc ^{2}\left (f x +e \right )\right )-1\right )}{\left (1-\cos \left (f x +e \right )\right )^{2} \left (\csc ^{2}\left (f x +e \right )\right )+1}}\, b \sqrt {-a^{2}+b^{2}}\, \left (-b +\sqrt {-a^{2}+b^{2}}+a \right ) \left (b +\sqrt {-a^{2}+b^{2}}-a \right )}\) \(885\)

[In]

int((d*sin(f*x+e))^(3/2)/(a+b*sin(f*x+e))/(g*cos(f*x+e))^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/f*(d/((1-cos(f*x+e))^2*csc(f*x+e)^2+1)*(csc(f*x+e)-cot(f*x+e)))^(3/2)/(1-cos(f*x+e))^2*(I*EllipticPi((-cot(
f*x+e)+csc(f*x+e)+1)^(1/2),1/2-1/2*I,1/2*2^(1/2))*a*(-a^2+b^2)^(1/2)-I*EllipticPi((-cot(f*x+e)+csc(f*x+e)+1)^(
1/2),1/2-1/2*I,1/2*2^(1/2))*b*(-a^2+b^2)^(1/2)-I*EllipticPi((-cot(f*x+e)+csc(f*x+e)+1)^(1/2),1/2+1/2*I,1/2*2^(
1/2))*a*(-a^2+b^2)^(1/2)+I*EllipticPi((-cot(f*x+e)+csc(f*x+e)+1)^(1/2),1/2+1/2*I,1/2*2^(1/2))*b*(-a^2+b^2)^(1/
2)-EllipticPi((-cot(f*x+e)+csc(f*x+e)+1)^(1/2),1/2-1/2*I,1/2*2^(1/2))*(-a^2+b^2)^(1/2)*a+EllipticPi((-cot(f*x+
e)+csc(f*x+e)+1)^(1/2),1/2-1/2*I,1/2*2^(1/2))*b*(-a^2+b^2)^(1/2)-EllipticPi((-cot(f*x+e)+csc(f*x+e)+1)^(1/2),1
/2+1/2*I,1/2*2^(1/2))*a*(-a^2+b^2)^(1/2)+EllipticPi((-cot(f*x+e)+csc(f*x+e)+1)^(1/2),1/2+1/2*I,1/2*2^(1/2))*b*
(-a^2+b^2)^(1/2)+EllipticPi((-cot(f*x+e)+csc(f*x+e)+1)^(1/2),a/(-b+(-a^2+b^2)^(1/2)+a),1/2*2^(1/2))*(-a^2+b^2)
^(1/2)*a+EllipticPi((-cot(f*x+e)+csc(f*x+e)+1)^(1/2),a/(-b+(-a^2+b^2)^(1/2)+a),1/2*2^(1/2))*a^2-EllipticPi((-c
ot(f*x+e)+csc(f*x+e)+1)^(1/2),a/(-b+(-a^2+b^2)^(1/2)+a),1/2*2^(1/2))*a*b+EllipticPi((-cot(f*x+e)+csc(f*x+e)+1)
^(1/2),-a/(b+(-a^2+b^2)^(1/2)-a),1/2*2^(1/2))*(-a^2+b^2)^(1/2)*a-EllipticPi((-cot(f*x+e)+csc(f*x+e)+1)^(1/2),-
a/(b+(-a^2+b^2)^(1/2)-a),1/2*2^(1/2))*a^2+EllipticPi((-cot(f*x+e)+csc(f*x+e)+1)^(1/2),-a/(b+(-a^2+b^2)^(1/2)-a
),1/2*2^(1/2))*a*b)*(-csc(f*x+e)+cot(f*x+e))^(1/2)*(2+2*cot(f*x+e)-2*csc(f*x+e))^(1/2)*(-cot(f*x+e)+csc(f*x+e)
+1)^(1/2)/(-g*((1-cos(f*x+e))^2*csc(f*x+e)^2-1)/((1-cos(f*x+e))^2*csc(f*x+e)^2+1))^(1/2)*((1-cos(f*x+e))^2+sin
(f*x+e)^2)*2^(1/2)*a/b/(-a^2+b^2)^(1/2)/(-b+(-a^2+b^2)^(1/2)+a)/(b+(-a^2+b^2)^(1/2)-a)

Fricas [F(-1)]

Timed out. \[ \int \frac {(d \sin (e+f x))^{3/2}}{\sqrt {g \cos (e+f x)} (a+b \sin (e+f x))} \, dx=\text {Timed out} \]

[In]

integrate((d*sin(f*x+e))^(3/2)/(a+b*sin(f*x+e))/(g*cos(f*x+e))^(1/2),x, algorithm="fricas")

[Out]

Timed out

Sympy [F]

\[ \int \frac {(d \sin (e+f x))^{3/2}}{\sqrt {g \cos (e+f x)} (a+b \sin (e+f x))} \, dx=\int \frac {\left (d \sin {\left (e + f x \right )}\right )^{\frac {3}{2}}}{\sqrt {g \cos {\left (e + f x \right )}} \left (a + b \sin {\left (e + f x \right )}\right )}\, dx \]

[In]

integrate((d*sin(f*x+e))**(3/2)/(a+b*sin(f*x+e))/(g*cos(f*x+e))**(1/2),x)

[Out]

Integral((d*sin(e + f*x))**(3/2)/(sqrt(g*cos(e + f*x))*(a + b*sin(e + f*x))), x)

Maxima [F]

\[ \int \frac {(d \sin (e+f x))^{3/2}}{\sqrt {g \cos (e+f x)} (a+b \sin (e+f x))} \, dx=\int { \frac {\left (d \sin \left (f x + e\right )\right )^{\frac {3}{2}}}{\sqrt {g \cos \left (f x + e\right )} {\left (b \sin \left (f x + e\right ) + a\right )}} \,d x } \]

[In]

integrate((d*sin(f*x+e))^(3/2)/(a+b*sin(f*x+e))/(g*cos(f*x+e))^(1/2),x, algorithm="maxima")

[Out]

integrate((d*sin(f*x + e))^(3/2)/(sqrt(g*cos(f*x + e))*(b*sin(f*x + e) + a)), x)

Giac [F]

\[ \int \frac {(d \sin (e+f x))^{3/2}}{\sqrt {g \cos (e+f x)} (a+b \sin (e+f x))} \, dx=\int { \frac {\left (d \sin \left (f x + e\right )\right )^{\frac {3}{2}}}{\sqrt {g \cos \left (f x + e\right )} {\left (b \sin \left (f x + e\right ) + a\right )}} \,d x } \]

[In]

integrate((d*sin(f*x+e))^(3/2)/(a+b*sin(f*x+e))/(g*cos(f*x+e))^(1/2),x, algorithm="giac")

[Out]

integrate((d*sin(f*x + e))^(3/2)/(sqrt(g*cos(f*x + e))*(b*sin(f*x + e) + a)), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {(d \sin (e+f x))^{3/2}}{\sqrt {g \cos (e+f x)} (a+b \sin (e+f x))} \, dx=\int \frac {{\left (d\,\sin \left (e+f\,x\right )\right )}^{3/2}}{\sqrt {g\,\cos \left (e+f\,x\right )}\,\left (a+b\,\sin \left (e+f\,x\right )\right )} \,d x \]

[In]

int((d*sin(e + f*x))^(3/2)/((g*cos(e + f*x))^(1/2)*(a + b*sin(e + f*x))),x)

[Out]

int((d*sin(e + f*x))^(3/2)/((g*cos(e + f*x))^(1/2)*(a + b*sin(e + f*x))), x)